Properties

Label 26620.s.2.b1
Order $ 2 \cdot 5 \cdot 11^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_{10}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Index: \(2\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, b, c, a^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_{11}^3:C_{10}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{11}^3.C_{10}.C_{10}^2.C_2$
$W$$C_{11}^3:C_{10}$, of order \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_{11}^3:C_{10}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_{11}^3:C_{10}$
Maximal under-subgroups:$C_{11}^2:C_{55}$$C_{11}^3:C_2$$C_{11}:F_{11}$$C_{11}:F_{11}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$C_2\times C_{11}^3:C_{10}$