Properties

Label 26620.g.44.b1
Order $ 5 \cdot 11^{2} $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{55}$
Order: \(605\)\(\medspace = 5 \cdot 11^{2} \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{22}, c^{2}, a^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{11}\times C_{22}:F_{11}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{10}\times F_{11}$, of order \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{22}\times F_{11}$
Normal closure:$C_{11}^2:C_{55}$
Core:$C_{11}^2$
Minimal over-subgroups:$C_{11}^2:C_{55}$$C_{11}:C_{110}$$C_{11}\times F_{11}$
Maximal under-subgroups:$C_{11}^2$$C_{55}$$C_{11}:C_5$

Other information

Number of subgroups in this autjugacy class$22$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-2$
Projective image$C_{22}:F_{11}$