Properties

Label 26620.g.44.a1
Order $ 5 \cdot 11^{2} $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_5$
Order: \(605\)\(\medspace = 5 \cdot 11^{2} \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{22}, c^{2}, bc^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\times C_{22}:F_{11}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Outer Automorphisms: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_5.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times C_{22}:F_{11}$
Complements:$C_2\times C_{22}$
Minimal over-subgroups:$C_{11}^2:C_{55}$$C_{11}^2:C_{10}$$C_{11}:F_{11}$
Maximal under-subgroups:$C_{11}^2$$C_{11}:C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_{11}\times C_{22}:F_{11}$