Properties

Label 2654208.bv.10368.A
Order $ 2^{8} $
Index $ 2^{7} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(1,2)(7,8)(9,10)(13,14)(15,16)(21,22), (3,4)(7,8)(15,16)(19,20), (7,8)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.(C_2\times S_3^2:S_3^2)$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_3^4.C_2^6.C_2^6$
Outer Automorphisms: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $\GL(8,2)$
$W$$S_3^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^{11}$
Normalizer:$C_2^{10}.(C_2\times S_3^2:S_3^2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{10}.(C_2\times S_3^2:S_3^2)$