Subgroup ($H$) information
| Description: | $C_3\times C_9$ |
| Order: | \(27\)\(\medspace = 3^{3} \) |
| Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$e, f^{21}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_9^2.C_3^2.S_3^2$ |
| Order: | \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) |
| Exponent: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $(C_3\times C_9):S_3^2$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Automorphism Group: | $S_3\times C_3^3:\GL(2,3)$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
| Outer Automorphisms: | $C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_9^2.C_3^2.S_3^2$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) |
| $\operatorname{Aut}(H)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| $W$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_9^2.C_3^2.S_3^2$ |