Properties

Label 26244.gu.2.C
Order $ 2 \cdot 3^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(13122\)\(\medspace = 2 \cdot 3^{8} \)
Index: \(2\)
Exponent: not computed
Generators: $\langle(19,26,27)(20,24,25), (21,23,22), (2,14,15)(4,17,7)(5,9,8)(19,26,27)(20,24,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, nonabelian, and supersolvable (hence solvable and monomial). Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^7.D_6$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times A_5:\GL(2,\mathbb{Z}/4)$, of order \(2834352\)\(\medspace = 2^{4} \cdot 3^{11} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^7.D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed