Properties

Label 25992.bj.4.b1.a1
Order $ 2 \cdot 3^{2} \cdot 19^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(6498\)\(\medspace = 2 \cdot 3^{2} \cdot 19^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $cd^{15}, d, a^{6}, a^{2}, a^{9}bc^{4}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_{19}^2:C_{18}$
Order: \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(12996\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{19}^2:(C_2\times C_{18})$
Normal closure:$C_{19}^2:(C_2\times C_{18})$
Core:$C_{19}^2:C_9$
Minimal over-subgroups:$C_{19}^2:(C_2\times C_{18})$
Maximal under-subgroups:$C_{19}^2:C_9$$C_{19}^2:C_6$$C_{19}:C_{18}$$F_{19}$
Autjugate subgroups:25992.bj.4.b1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{19}^2:C_{18}$