Properties

Label 25992.bj.12996.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 3^{2} \cdot 19^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(12996\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(2\)
Generators: $a^{9}bc^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $D_{19}^2:C_{18}$
Order: \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times F_{19}$
Normalizer:$C_2\times F_{19}$
Normal closure:$D_{19}^2$
Core:$C_1$
Minimal over-subgroups:$C_{38}$$D_{19}$$C_6$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:25992.bj.12996.a1.b1

Other information

Number of subgroups in this conjugacy class$38$
Möbius function$0$
Projective image$D_{19}^2:C_{18}$