Properties

Label 25992.bj.12.a1.a1
Order $ 2 \cdot 3 \cdot 19^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}^2:C_6$
Order: \(2166\)\(\medspace = 2 \cdot 3 \cdot 19^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(114\)\(\medspace = 2 \cdot 3 \cdot 19 \)
Generators: $b^{2}c^{11}d^{13}, a^{6}, d, cd^{17}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{19}^2:C_{18}$
Order: \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $C_{19}^2.\GL(2,19)$, of order \(44446320\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \cdot 19^{3} \)
$W$$D_{19}^2:C_{18}$, of order \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{19}^2:C_{18}$
Minimal over-subgroups:$C_{19}:F_{19}$$C_{19}^2:(C_2\times C_6)$$C_{19}^2:(C_2\times C_6)$$C_{19}^2:C_{12}$
Maximal under-subgroups:$C_{19}^2:C_3$$C_{19}:D_{19}$$C_{19}:C_6$$C_{19}:C_6$$C_{19}:C_6$$C_{19}:C_6$$C_{19}:C_6$$C_{19}:C_6$

Other information

Möbius function$-2$
Projective image$D_{19}^2:C_{18}$