Properties

Label 259200.b.10800.g1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(10800\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrrr} 5 & 0 & -1 & -1 \\ 3 & 1 & -1 & -1 \\ -1 & -1 & 5 & 4 \\ -1 & -1 & 7 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 3 & 0 & -1 & -1 \\ 1 & 7 & -1 & -1 \\ -1 & -1 & 3 & 4 \\ -1 & -1 & 5 & 7 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 0 & -1 & 4 & -1 \\ 5 & 4 & 1 & 4 \\ 2 & -1 & 3 & -1 \\ 3 & 2 & 4 & 7 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 4 & 6 & -1 & -1 \\ 1 & 5 & -1 & -1 \\ -1 & -1 & 4 & 2 \\ -1 & -1 & 5 & 5 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $\PSOPlus(4,9)$
Order: \(259200\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_{12}:D_6$
Normal closure:$A_6^2$
Core:$C_1$
Minimal over-subgroups:$D_4\times A_4$$D_4\times C_3^2$$C_3\times S_4$$S_3\times D_4$
Maximal under-subgroups:$C_{12}$$C_2\times C_6$$D_4$

Other information

Number of subgroups in this autjugacy class$3600$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\PSOPlus(4,9)$