Properties

Label 2592.oa.6.c1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3)(4,6)(8,11)(9,12)(10,13), (1,2,3)(8,12,13)(9,11,10), (9,11)(12,13), (9,10,11), (8,13,12)(9,11,10), (5,7)(12,13), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_3\times C_6^2):D_{12}$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^3:C_2\times S_4$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_3^3:C_2^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_3\times C_6^2):D_4$
Normal closure:$(C_3\times C_6^2):D_{12}$
Core:$C_3^3:C_4$
Minimal over-subgroups:$(C_3\times C_6^2):D_4$
Maximal under-subgroups:$C_6\times S_3^2$$C_6:S_3^2$$C_2\times C_3^3:C_4$$S_3^2:S_3$$S_3^2:S_3$$S_3^2:C_2^2$$C_6:D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$(C_3\times C_6^2):D_{12}$