Properties

Label 2592.ly.4.e1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_2^3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,12,11), (13,14), (4,6,5), (1,2,3), (1,2)(4,5), (7,9,8), (7,8)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2\times S_3^4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_2\wr S_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $(C_3^2\times C_6^2).\GL(2,3)\wr C_2$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \)
$\operatorname{res}(S)$$\SOPlus(4,2)^2.D_4$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3^4$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times S_3^4$
Complements:$C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_6:S_3^3$$C_6:S_3^3$
Maximal under-subgroups:$C_3^2:C_6^2$$C_3^3:D_6$$C_3^2:S_3^2$$C_6:S_3^2$$C_6:S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$S_3^4$