Properties

Label 2592.ly.288.a1
Order $ 3^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(1,2,3), (7,9,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times S_3^4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Quotient group ($Q$) structure

Description: $C_2\times D_6^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3:S_3.C_2^5.C_2^3.\PSL(2,7)$
Outer Automorphisms: $C_2^6:(C_2\times \GL(3,2))$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_2\wr S_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^4:C_2^3$
Normalizer:$C_2\times S_3^4$
Complements:$C_2\times D_6^2$
Minimal over-subgroups:$C_3^3$$C_3^3$$C_3\times C_6$$C_3\times S_3$$C_3:S_3$$C_3\times C_6$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3:S_3$$C_3:S_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image$C_2\times S_3^4$