Properties

Label 2592.lc.162.g1.a1
Order $ 2^{4} $
Index $ 2 \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(12,13), (1,2)(4,7)(5,6)(8,9)(10,11), (10,11)(12,13), (10,12)(11,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3.(D_4\times S_4)$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times D_6$
Normalizer:$D_4\times D_6$
Normal closure:$C_6^2:D_6$
Core:$C_2^2$
Minimal over-subgroups:$C_6\times D_4$$S_3\times D_4$$S_3\times D_4$$C_2\times S_4$$C_2^2\times D_4$
Maximal under-subgroups:$C_2^3$$D_4$$C_2\times C_4$$D_4$$D_4$$C_2^3$$D_4$
Autjugate subgroups:2592.lc.162.g1.b1

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_3^2:D_6\times S_4$