Properties

Label 2592.jx.3.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4,6)(2,8,7)(3,9,5)(10,12)(11,13), (1,4)(10,13)(11,12), (1,6,4)(3,9,5), (5,9)(7,8), (2,7)(5,9)(10,11)(12,13), (3,9,5), (1,6)(3,9), (2,7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^2\times S_3\wr C_3$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_6^3:C_2^2.S_4^2$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3\wr C_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times S_3\wr C_3$
Complements:$C_3$
Minimal over-subgroups:$C_2^2\times S_3\wr C_3$
Maximal under-subgroups:$C_2\times S_3^3$$C_3:D_6^2$$C_2\times S_3^3$$C_3:D_6^2$$C_3\times D_6^2$$C_2\times D_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$S_3\wr C_3$