Subgroup ($H$) information
| Description: | $S_3\times D_6^2$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Index: | \(3\) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,4,6)(2,8,7)(3,9,5)(10,12)(11,13), (1,4)(10,13)(11,12), (1,6,4)(3,9,5), (5,9)(7,8), (2,7)(5,9)(10,11)(12,13), (3,9,5), (1,6)(3,9), (2,7,8)\rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_2^2\times S_3\wr C_3$ |
| Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3$ |
| Order: | \(3\) |
| Exponent: | \(3\) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| $\operatorname{Aut}(H)$ | $C_6^3:C_2^2.S_4^2$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
| $W$ | $S_3\wr C_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $S_3\wr C_3$ |