Properties

Label 2592.he.108.bo1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{9}, cd^{3}e, d^{3}, a^{2}cd^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_6^3.D_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.(C_6\times S_3).C_2$
$\operatorname{Aut}(H)$ $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_6^2$
Normalizer:$C_2^2\times C_6^2$
Normal closure:$D_6\times C_6^2$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_6^2$$C_6\times D_6$$C_2^3\times C_6$
Maximal under-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$
Autjugate subgroups:2592.he.108.bo1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_6^3.D_6$