Properties

Label 2592.dy.2.a1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_3^4:C_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $d^{3}, b, ce^{2}, a^{2}, a^{4}, e^{2}, d^{2}e^{4}, e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2:F_9$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.(C_4\times C_8).C_2^5.C_2$
$\operatorname{Aut}(H)$ $A_4.C_3^4.C_4.C_2^2.A_6.C_2^2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3^2:F_9$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:F_9$
Minimal over-subgroups:$C_6^2:F_9$
Maximal under-subgroups:$C_3^4:C_2^3$$C_2\times C_3^4:C_4$$C_2\times C_3^4:C_4$$C_2\times C_3^4:C_4$$C_6^2:C_4$$C_6^2:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\times C_3^2:F_9$