Properties

Label 2592.dx.8.e1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_6^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(12,16,15), (11,14,13), (2,3)(7,8)(9,10)(12,15), (1,4,5)(2,6,3)(11,13,14), (2,6,3)(11,14,13)(12,16,15), (1,4,5)(2,3,6)(7,10)(8,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2:\SOPlus(4,2)$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_6.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)\times \AGL(2,3)$
$\operatorname{res}(S)$$C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_6:D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^2:S_3^2$
Normal closure:$C_3^4:C_2^3$
Core:$C_3^3\times C_6$
Minimal over-subgroups:$C_3^4:C_2^3$$C_3^4:D_4$$C_3^3:D_{12}$
Maximal under-subgroups:$C_3^3\times C_6$$C_3^2\wr C_2$$C_3^2\times D_6$$C_3^2:D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2\times C_3^4:D_4$