Properties

Label 2592.dx.16.b1
Order $ 2 \cdot 3^{4} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(12,16,15), (11,14,13), (1,4,5)(2,6,3)(11,13,14), (2,6,3)(11,14,13)(12,16,15), (2,6)(4,5)(11,13)(12,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_6^2:\SOPlus(4,2)$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_6.C_2^5.C_2$
$\operatorname{Aut}(H)$ $\AGL(4,3)$, of order \(1965150720\)\(\medspace = 2^{9} \cdot 3^{10} \cdot 5 \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^4:\GL(2,3):D_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_3^4:D_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:\SOPlus(4,2)$
Minimal over-subgroups:$C_3^3:D_6$$C_3^4:C_4$$C_3^3:D_6$$C_3^2:S_3^2$$C_3^4:C_4$
Maximal under-subgroups:$C_3^4$$C_3^2:S_3$$C_3^2:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^2:\SOPlus(4,2)$