Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$a^{2}bc^{2}d^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $C_4^2.(C_2^2\times C_4)$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $5$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times (C_2^2\times D_4).C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_2\times C_8$ | ||
Normalizer: | $C_8:D_4$ | ||
Normal closure: | $C_8:C_4$ | ||
Core: | $C_2$ | ||
Minimal over-subgroups: | $C_2\times C_8$ | $D_8$ | $\SD_{16}$ |
Maximal under-subgroups: | $C_4$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_2^4.D_4$ |