Properties

Label 256.6149.4.j1.b1
Order $ 2^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b^{2}c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4.(C_8\times Q_8)$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^5.D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times C_{16}$
Normalizer:$C_2\times C_4\times C_{16}$
Normal closure:$C_2\times C_4\times C_{16}$
Core:$C_4\times C_8$
Minimal over-subgroups:$C_2\times C_4\times C_{16}$
Maximal under-subgroups:$C_4\times C_8$$C_2\times C_{16}$$C_2\times C_{16}$
Autjugate subgroups:256.6149.4.j1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_4:D_4$