Properties

Label 256.5846.128.b1
Order $ 2 $
Index $ 2^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(2\)
Generators: $de^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^5.D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^4.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^4.D_4^2$, of order \(1024\)\(\medspace = 2^{10} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $4$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(8192\)\(\medspace = 2^{13} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5.D_4$
Normalizer:$C_2^5.D_4$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^4.D_4$