Properties

Label 256.5615.4.i1.c1
Order $ 2^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b^{2}c$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2:C_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2.C_2^6.C_2^6$
$\operatorname{Aut}(H)$ $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^4:C_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2:C_4^2$
Complements:$C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_2^4.D_4$
Maximal under-subgroups:$C_4^2:C_2$$C_2^3:C_4$$C_2^3:C_4$
Autjugate subgroups:256.5615.4.i1.a1256.5615.4.i1.b1256.5615.4.i1.d1256.5615.4.i1.e1256.5615.4.i1.f1256.5615.4.i1.g1256.5615.4.i1.h1

Other information

Möbius function$0$
Projective image$C_2^3:C_4^2$