Properties

Label 256.5451.4.g1.a1
Order $ 2^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{32}:C_2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b^{2}c^{13}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_8.Q_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4.C_4^3.C_2^3$
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{16}.D_4$
Normal closure:$C_{16}.D_4$
Core:$C_2\times C_{16}$
Minimal over-subgroups:$C_{16}.D_4$
Maximal under-subgroups:$C_2\times C_{16}$$\OD_{16}:C_2$$\OD_{32}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4.Q_{16}$