Properties

Label 256.5425.4.i1.a1
Order $ 2^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ac^{14}, bc$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{16}.D_8$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2.C_4^3.C_2^5$
$\operatorname{Aut}(H)$ $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_4:D_8$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_8.D_8$
Normal closure:$C_8.D_8$
Core:$C_8.C_4$
Minimal over-subgroups:$C_8.D_8$
Maximal under-subgroups:$C_8.C_4$$C_2\times Q_{16}$$\OD_{32}$
Autjugate subgroups:256.5425.4.i1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_8:D_8$