Properties

Label 256.53740.32.eg1.f2
Order $ 2^{3} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(2\)
Generators: $ae^{6}, bde^{2}, cd^{2}e^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5.D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 32T6703.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2^5$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^4\times C_4$
Normalizer:$C_2^4\times C_4$
Normal closure:$C_2^5$
Core:$C_1$
Minimal over-subgroups:$C_2^4$$C_2^4$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Autjugate subgroups:256.53740.32.eg1.a1256.53740.32.eg1.a2256.53740.32.eg1.b1256.53740.32.eg1.b2256.53740.32.eg1.c1256.53740.32.eg1.c2256.53740.32.eg1.d1256.53740.32.eg1.d2256.53740.32.eg1.e1256.53740.32.eg1.e2256.53740.32.eg1.f1256.53740.32.eg1.g1256.53740.32.eg1.g2256.53740.32.eg1.h1256.53740.32.eg1.h2

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image not computed