Properties

Label 256.53038.2.b1
Order $ 2^{7} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c, e^{2}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^3\times C_4\times C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5.C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2^{10}.C_2^6:(S_3\times \GL(3,2))$, of order \(66060288\)\(\medspace = 2^{20} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2752512\)\(\medspace = 2^{17} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_4\times C_8$
Normalizer:$C_2^3\times C_4\times C_8$
Minimal over-subgroups:$C_2^3\times C_4\times C_8$
Maximal under-subgroups:$C_2^2\times C_4^2$$C_2^2\times C_4^2$$C_2^4\times C_4$$C_2^4\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2$