Properties

Label 256.53038.16.i1
Order $ 2^{4} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Generators: $a, b, c, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^3\times C_4\times C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5.C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$C_2^3:\GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4096\)\(\medspace = 2^{12} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_4\times C_8$
Normalizer:$C_2^3\times C_4\times C_8$
Minimal over-subgroups:$C_2^3\times C_4$$C_2^5$
Maximal under-subgroups:$C_2^3$$C_2^3$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$0$
Projective image$C_2\times C_8$