Properties

Label 256.507.2.a1.a1
Order $ 2^{7} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.C_2^3$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(2\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{2}c^{3}d^{7}, cd$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_4\times C_8).D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$6$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4^2.C_2^4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_2^8.D_4$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4^2:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\wr C_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_4\times C_8).D_4$
Minimal over-subgroups:$(C_4\times C_8).D_4$
Maximal under-subgroups:$C_4^2.C_2^2$$C_8:D_4$$C_4.Q_{16}$$C_4:D_8$$D_4:C_8$

Other information

Möbius function$-1$
Projective image$C_4^2.D_4$