Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(2\) |
| Generators: |
$d^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $(C_4\times C_8).D_4$ |
| Order: | \(256\)\(\medspace = 2^{8} \) |
| Exponent: | \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $6$ |
| Derived length: | $3$ |
The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).
Quotient group ($Q$) structure
| Description: | $C_4^2.D_4$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Automorphism Group: | $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $5$ |
| Derived length: | $3$ |
The quotient is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_4^2.C_2^4$, of order \(1024\)\(\medspace = 2^{10} \) |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1024\)\(\medspace = 2^{10} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $(C_4\times C_8).D_4$ | ||||
| Normalizer: | $(C_4\times C_8).D_4$ | ||||
| Minimal over-subgroups: | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_4$ | $C_4$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_4^2.D_4$ |