Properties

Label 256.4554.64.k1.a1
Order $ 2^{2} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}b^{2}cd^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $(C_2^3\times C_4).D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^2:\OD_{16}$
Normalizer:$C_2^2:\OD_{16}$
Normal closure:$C_2^2\times C_4$
Core:$C_2$
Minimal over-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_8$$C_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed