Properties

Label 256.4554.4.l1.a1
Order $ 2^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, d, b^{2}d^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_4).D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4$
$\operatorname{Aut}(H)$ $C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^3.\OD_{16}$
Normal closure:$C_2^3.\OD_{16}$
Core:$C_2^3\times C_4$
Minimal over-subgroups:$C_2^3.\OD_{16}$
Maximal under-subgroups:$C_2^3\times C_4$$C_2^2:C_8$$C_2^2:C_8$$C_2^2\times C_8$$C_2^2:C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed