Properties

Label 256.26962.64.b1
Order $ 2^{2} $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $a, c^{16}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $\OD_{64}:C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4:C_2:A_4.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\OD_{32}:C_2^2$
Normalizer:$\OD_{64}:C_2^2$
Minimal over-subgroups:$C_2^3$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^3\times C_{16}$