Subgroup ($H$) information
| Description: | $C_4.C_2^3$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $a, bc^{15}, c^{12}d^{2}, c^{12}$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $D_8.D_8$ | 
| Order: | \(256\)\(\medspace = 2^{8} \) | 
| Exponent: | \(16\)\(\medspace = 2^{4} \) | 
| Nilpotency class: | $4$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_4\times C_8).C_2^6$ | 
| $\operatorname{Aut}(H)$ | $C_2^4:S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) | 
| $\operatorname{res}(S)$ | $D_4^2$, of order \(64\)\(\medspace = 2^{6} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) | 
| $W$ | $D_4^2$, of order \(64\)\(\medspace = 2^{6} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ | 
| Number of conjugacy classes in this autjugacy class | $4$ | 
| Möbius function | $0$ | 
| Projective image | $D_4\times D_8$ |