Properties

Label 256.26545.64.be1.d1
Order $ 2^{2} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $abc^{2}d, b^{2}c^{2}e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_4^2).D_4$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2\wr C_2$
Normal closure:$D_4:C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_2^3$$C_2^3$$D_4$
Maximal under-subgroups:$C_2$$C_2$
Autjugate subgroups:256.26545.64.be1.a1256.26545.64.be1.b1256.26545.64.be1.c1

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$D_4^2:C_2^2$