Properties

Label 256.26539.8.j1.a1
Order $ 2^{5} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ac^{2}, c^{2}d^{3}, e$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:C_2^4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_4^2:\GL(2,\mathbb{Z}/4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\wr C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4^2:C_2^2$
Complements:$D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$
Minimal over-subgroups:$C_4^2:C_2^2$$C_4^2:C_2^2$$D_4:D_4$
Maximal under-subgroups:$C_2\times D_4$$C_2\times D_4$$C_4^2$$C_2\times D_4$$C_2\times D_4$

Other information

Möbius function$0$
Projective image$C_2^4:D_4$