Properties

Label 256.26474.256.a1
Order $ 1 $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $D_4:(C_2\times C_{16})$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4:(C_2\times C_{16})$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_2^6.C_2^5.C_2^3$
Outer Automorphisms: $(C_2\times D_4).C_2^6$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$D_4:(C_2\times C_{16})$
Normalizer:$D_4:(C_2\times C_{16})$
Complements:$D_4:(C_2\times C_{16})$
Minimal over-subgroups:$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed