Properties

Label 256.26460.64.b1
Order $ 2^{2} $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2\times Q_8\times C_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $(C_2^3\times C_4):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2.C_2^6$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(12288\)\(\medspace = 2^{12} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times Q_8\times C_{16}$
Normalizer:$C_2\times Q_8\times C_{16}$
Minimal over-subgroups:$C_2\times C_4$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^2\times C_{16}$