Subgroup ($H$) information
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$bcd^{2}e^{3}, d$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4^2.(C_2^2\times C_4)$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $4$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 32T2317.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^7.D_4^2$, of order \(8192\)\(\medspace = 2^{13} \) |
$\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(256\)\(\medspace = 2^{8} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_4^2$ | ||
Normalizer: | $C_4^2:C_2^2$ | ||
Normal closure: | $C_2\times C_4^2$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_2^2\times C_4$ | $C_2\times D_4$ | |
Maximal under-subgroups: | $C_2^2$ | $C_4$ | $C_4$ |
Other information
Number of subgroups in this autjugacy class | $8$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_4^2.(C_2^2\times C_4)$ |