Properties

Label 256.23427.4.bn1.b1
Order $ 2^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:\SD_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ae^{3}, b, c$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4.D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^3.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times Q_{16}):C_2^2$
Normal closure:$(C_2\times Q_{16}):C_2^2$
Core:$C_2\times \SD_{16}$
Minimal over-subgroups:$(C_2\times Q_{16}):C_2^2$
Maximal under-subgroups:$C_2\times \SD_{16}$$C_2^2\times D_4$$D_4:C_4$$C_2\times \SD_{16}$$D_4:C_4$$C_2^2:Q_8$$C_2^2:C_8$
Autjugate subgroups:256.23427.4.bn1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image not computed