Properties

Label 256.18790.16.er1.a1
Order $ 2^{4} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $bc^{2}de^{6}, e$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_4.D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times D_4$
Normalizer:$D_8:C_2^3$
Normal closure:$C_2\times \SD_{16}$
Core:$C_8$
Minimal over-subgroups:$C_2\times \SD_{16}$$D_8:C_2$$D_8:C_2$$C_2\times \SD_{16}$$C_2\times \SD_{16}$$C_2\times \SD_{16}$$C_2\times \SD_{16}$
Maximal under-subgroups:$C_8$$D_4$$Q_8$
Autjugate subgroups:256.18790.16.er1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image not computed