Subgroup ($H$) information
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Index: | \(128\)\(\medspace = 2^{7} \) | 
| Exponent: | \(2\) | 
| Generators: | $\left(\begin{array}{rr}
15 & 0 \\
0 & 15
\end{array}\right)$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_8^2:C_2^2$ | 
| Order: | \(256\)\(\medspace = 2^{8} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_8:D_8$ | 
| Order: | \(128\)\(\medspace = 2^{7} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Automorphism Group: | $C_2^6.C_4^2:\GL(2,\mathbb{Z}/4)$, of order \(98304\)\(\medspace = 2^{15} \cdot 3 \) | 
| Outer Automorphisms: | $(C_2^5\times C_4).S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^5\times C_4^2).C_2^6.A_4.D_4$ | 
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ | 
| $\operatorname{res}(S)$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(786432\)\(\medspace = 2^{18} \cdot 3 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_8^2:C_2^2$ | |
| Normalizer: | $C_8^2:C_2^2$ | |
| Complements: | $C_8:D_8$ | |
| Minimal over-subgroups: | $C_2^2$ | $C_2^2$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Number of subgroups in this autjugacy class | $4$ | 
| Number of conjugacy classes in this autjugacy class | $4$ | 
| Möbius function | $0$ | 
| Projective image | $C_8:D_8$ | 
