Properties

Label 2519424.jt.12.T
Order $ 2^{5} \cdot 3^{8} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6:A_4\wr C_2$
Order: \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,9,3)(4,6,13)(16,17,18), (1,5,14)(11,12,15)(16,17,18), (16,17,18), (1,5,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^7.A_4^2:D_4$
Order: \(2519424\)\(\medspace = 2^{7} \cdot 3^{9} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $C_3^6.A_4^2:C_2^3$, of order \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
$W$$C_3^6.A_4^2:C_2^2$, of order \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^7.A_4^2:C_2^2$
Normal closure:$C_3^7.A_4^2:C_2^2$
Core:$C_3^6:(C_2^2:A_4)$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^7.A_4^2:D_4$