Properties

Label 2500000.m.10000._.A
Order $ 2 \cdot 5^{3} $
Index $ 2^{4} \cdot 5^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_2$
Order: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Index: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{2}b^{4}f^{4}g^{3}h^{3}, ce^{4}f^{3}g^{4}h^{2}, de^{3}f^{4}gh, b^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5^6.C_{40}:C_4$
Order: \(2500000\)\(\medspace = 2^{5} \cdot 5^{7} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5^4.\OD_{16}$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_5^4:(C_4^3:C_2^2)$, of order \(160000\)\(\medspace = 2^{8} \cdot 5^{4} \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(640000000\)\(\medspace = 2^{13} \cdot 5^{7} \)
$\operatorname{Aut}(H)$ $\AGL(3,5)$, of order \(186000000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{6} \cdot 31 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed