Subgroup ($H$) information
| Description: | $C_6^3.(S_3\times D_4)$ |
| Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\langle(14,20)(15,16), (1,6,10,7,8,5)(2,4,9,3,11,12)(13,17)(14,16)(15,20)(18,19) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_2^3.S_3\wr S_4$ |
| Order: | \(248832\)\(\medspace = 2^{10} \cdot 3^{5} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $5$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_2^5.A_4.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_3^4.C_2^6.C_2^6$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $C_3^3:C_{12}.D_4^2$ |
| Normal closure: | $C_3^4.(C_2^6.S_4)$ |
| Core: | $C_6^3:S_3$ |
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |