Properties

Label 248832.f.24.FO
Order $ 2^{7} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(14,20)(15,16), (1,6,10,7,8,5)(2,4,9,3,11,12)(13,17)(14,16)(15,20)(18,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^3.S_3\wr S_4$
Order: \(248832\)\(\medspace = 2^{10} \cdot 3^{5} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^5.A_4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^4.C_2^6.C_2^6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^3:C_{12}.D_4^2$
Normal closure:$C_3^4.(C_2^6.S_4)$
Core:$C_6^3:S_3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed