Properties

Label 248.12.2.a1.g1
Order $ 2^{2} \cdot 31 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{62}$
Order: \(124\)\(\medspace = 2^{2} \cdot 31 \)
Index: \(2\)
Exponent: \(62\)\(\medspace = 2 \cdot 31 \)
Generators: $ac^{31}, bc^{31}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^2\times C_{62}$
Order: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Exponent: \(62\)\(\medspace = 2 \cdot 31 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{30}\times \PSL(2,7)$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times C_{30}$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(S)$$S_3\times C_{30}$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{62}$
Normalizer:$C_2^2\times C_{62}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2^2\times C_{62}$
Maximal under-subgroups:$C_{62}$$C_{62}$$C_{62}$$C_2^2$
Autjugate subgroups:248.12.2.a1.a1248.12.2.a1.b1248.12.2.a1.c1248.12.2.a1.d1248.12.2.a1.e1248.12.2.a1.f1

Other information

Möbius function$-1$
Projective image$C_2$