Properties

Label 24704.21819.16.a1.a1
Order $ 2^{3} \cdot 193 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{386}:C_4$
Order: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Generators: $a^{16}, b^{193}, b^{2}, a^{32}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{386}:C_{64}$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{64}$, of order \(12352\)\(\medspace = 2^{6} \cdot 193 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{386}:C_{64}$
Minimal over-subgroups:$C_{386}:C_8$
Maximal under-subgroups:$D_{386}$$C_{193}:C_4$$C_{193}:C_4$$C_2\times C_4$

Other information

Möbius function$0$
Projective image$C_{193}:C_{64}$