Properties

Label 24200.be.12100.a1
Order $ 2 $
Index $ 2^{2} \cdot 5^{2} \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(2\)
Generators: $b^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{110}:F_{11}$
Order: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^2.C_5.C_{10}.C_{10}.C_2^4$
Outer Automorphisms: $C_2^2\times C_{10}\times F_5$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_5.C_{30}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{110}:F_{11}$
Normalizer:$C_2\times C_{110}:F_{11}$
Complements:$C_{110}:F_{11}$
Minimal over-subgroups:$C_{22}$$C_{22}$$C_{10}$$C_{10}$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$1210$
Projective image$C_{110}:F_{11}$