Properties

Label 24200.ba.4840.b1
Order $ 5 $
Index $ 2^{3} \cdot 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(5\)
Generators: $a^{2}c^{66}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_{11}\times C_{10}^2$
Normalizer:$D_{11}\times C_{10}^2$
Normal closure:$C_{11}:C_5$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_5$$C_{55}$$C_5^2$$C_{10}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$55$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$88$
Projective image$C_2\times C_{110}:F_{11}$