Properties

Label 24200.ba.44.b1
Order $ 2 \cdot 5^{2} \cdot 11 $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{110}$
Order: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $c^{55}, c^{22}, c^{10}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$
$\operatorname{Aut}(H)$ $C_{10}\times \GL(2,5)$
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}\times C_{110}$
Normalizer:$D_{11}\times C_{10}^2$
Normal closure:$C_{55}:C_{110}$
Core:$C_{110}$
Minimal over-subgroups:$C_{55}:C_{110}$$C_5^2\times D_{22}$$C_{10}\times C_{110}$
Maximal under-subgroups:$C_5\times C_{55}$$C_{110}$$C_{110}$$C_5\times C_{10}$

Other information

Number of subgroups in this autjugacy class$33$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-2$
Projective image$C_{22}:F_{11}$